skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rosen, Andrew_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Metal–organic frameworks (MOFs) are highly porous and versatile materials studied extensively for applications such as carbon capture and water harvesting. However, computing phonon-mediated properties in MOFs, like thermal expansion and mechanical stability, remains challenging due to the large number of atoms per unit cell, making traditional Density Functional Theory (DFT) methods impractical for high-throughput screening. Recent advances in machine learning potentials have led to foundation atomistic models, such as MACE-MP-0, that accurately predict equilibrium structures but struggle with phonon properties of MOFs. In this work, we developed a workflow for computing phonons in MOFs within the quasi-harmonic approximation with a fine-tuned MACE model, MACE-MP-MOF0. The model was trained on a curated dataset of 127 representative and diverse MOFs. The fine-tuned MACE-MP-MOF0 improves the accuracy of phonon density of states and corrects the imaginary phonon modes of MACE-MP-0, enabling high-throughput phonon calculations with state-of-the-art precision. The model successfully predicts thermal expansion and bulk moduli in agreement with DFT and experimental data for several well-known MOFs. These results highlight the potential of MACE-MP-MOF0 in guiding MOF design for applications in energy storage and thermoelectrics. 
    more » « less
  2. Abstract The first synthesis and comprehensive characterization of two vinyl tetrazine‐linked covalent organic frameworks (COF), TA‐COF‐1 and TA‐COF‐2, are reported. These materials exhibit high crystallinity and high specific surface areas of 1323 and 1114 m2g−1. The COFs demonstrate favorable band positions and narrow band gaps suitable for light‐driven applications. These advantages enable TA‐COFs to act as reusable metal‐free photocatalysts in the arylboronic acids oxidation and light‐induced coupling of benzylamines. In addition, these TA‐COFs show acid sensing capabilities, exhibiting visible and reversible color changes upon exposure to HCl solution, HCl vapor, and NH3vapor. Further, the TA‐COFs outperform a wide range of previously reported COF photocathodes. The tetrazine linker in the COF skeleton represents a significant advancement in the field of COF synthesis, enhancing the separation efficiency of charge carriers during the photoreaction and contributing to their photocathodic properties. TA‐COFs can also degrade 5‐nitro‐1,2,4‐triazol‐3‐one (NTO), an insensitive explosive present in industrial wastewater, in 20 min in a sunlight‐driven photocatalytic process; thus, revealing dual functionality of the protonated TA‐COFs as both photodegradation and Brønsted acid catalysts. This pioneering work opens new avenues for harnessing the potential of the tetrazine linker in COF‐based materials, facilitating advances in catalysis, sensing, and other related fields. 
    more » « less